Definition/Property

1.1 Review of Lines

Objectives:

- I can define and find slope
- I can write the equation of a line
- I can can graph and write a piecewise function

Slope

Lines that never intersect in the same plane
Perpendicular Lines

Find the slope of the following
$(4,-3)$ and $(2,5)$

x	-8	-4	0	4
$f(x)$	13	10	7	4

Name
Definition/Property

Vertical Line

$y=k$

Given the table find the slope

x	$f(x)$
-1	$14 / 3$
1	$-4 / 3$
2	$-13 / 3$

Write the equation of the line given $f(2)=3$ and $m=-3 / 2$

Write the equation of the line given $f(-2)=-1$ and $f(3)=4$
-

Slope intercept form

Pend

Find the slope and x-intercept given $8 x+5 y=20$

State the parallel and perpendicular slope of the following
$\mathrm{m}=2$
$m=3 / 4$

Find an equation for the line through $f(-1)=2$ and
a) // to $y=3(x+5)-7$
b) \perp to $y=3(x+5)-7$

Graph the following piecewise function

$$
f(x)=\left\{\begin{array}{l}
x+3, x<0 \\
x^{2}, 0 \leq x<2 \\
4 x, x \geq 2
\end{array}\right.
$$

State the domain and range

Graph the following piecewise function

$$
f(x)=\left\{\begin{array}{l}
4-x^{2}, x<1 \\
\frac{3}{2} x+\frac{3}{2}, 1 \leq x \leq 3 \\
x+3, x>3
\end{array}\right.
$$

[^0]Write a piecewise function for the following graph

[^0]: State the domain and range

