1.3/1.5 Exponential and Logarithms

Objectives:

- I can use properties of exponents
- I can use properties of logarithms

Simplify or Evaluate the following

$$
\begin{array}{ll}
x^{2} \cdot x^{4} & \frac{x^{7}}{x^{3}} \\
\sqrt[5]{x^{2}} & \sqrt[8]{x^{4}} \\
8^{\frac{2}{3}} & \frac{a^{3} b^{-2}}{b^{3} a^{-4}} \\
e^{3} \cdot e^{x} & e^{\ln x-4}
\end{array}
$$

Properties of Logarithms RS 15-20

$$
\begin{aligned}
& \text { 15. } \log _{b} y=x \quad b^{x}=y \\
& \text { 17. } \log _{b} x=\frac{\ln x}{\ln b} \text { or } \frac{\log x}{\log b} \\
& \text { 18. } \log _{b} x y=\log _{b} x+\log _{b} y \\
& \text { 19. } \log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y \\
& \text { 20. } \log _{b} x^{r}=r \log _{b} x \\
& \text { 21. } \log _{b} \sqrt[n]{x}=\frac{1}{n} \log _{b} x
\end{aligned}
$$

Write the following as a sum or difference

$$
\log \left(8 x y^{4}\right) \quad \log _{3}\left(\frac{9 m^{4}}{\sqrt[3]{n}}\right)
$$

Write the following as a single logarithm
$\ln x^{5}-2 \ln (x y)$

$$
\log (x-1)+\log (x+1)-3 \log x
$$

Rewrite the following as a log or exponential equation

$$
3^{5}=243
$$

$$
\log _{4} \frac{1}{64}=-3
$$

$$
y=e^{x-5}
$$

$$
\ln (y-1)=\ln x+2
$$

