# 2.1 Limits <br> Consider $f(x)=\frac{x^{2}-4}{x+4}$. What observations can you make? 

How can we describe what happens at $x=-2$ ?

Find the Limit: $\quad \lim _{x \rightarrow-3} \frac{x+3}{x^{2}+x-6}$
Finding limits Analytically:

Finding limits Graphically:

Finding limits Numerically:

Find each limit.

$$
\text { 1. } \lim _{x \rightarrow 2}\left(x^{2}+3 x-5\right)=
$$

2. $\lim _{x \rightarrow \pi}(\sin x \cos x)=$
3. $\lim _{x \rightarrow 4} \frac{x-4}{x^{2}-16}=$

Find the limit.
4. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=$
5. $\lim _{x \rightarrow 0} \frac{\sin x+x}{x}=$

Left and right hand limits.

$$
\lim _{x \rightarrow c^{+}} f(x) \quad \lim _{x \rightarrow c^{-}} f(x)
$$

## Definition of a limit:

$$
\lim _{x \rightarrow c} f(x)=\mathrm{L} \quad \text { iff } \quad \lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{-}} f(x)=\mathrm{L}
$$ the limit doesn't necessarily equal the function!!!


(a) $\lim _{x \rightarrow 1} f(x)=$
(b) $\lim _{x \rightarrow 3^{-}} f(x)=$
(c) $\lim _{x \rightarrow 3^{+}} f(x)=$
(d) $\lim _{x \rightarrow 3} f(x)=$
(e) $f(3)=$
(f) $\lim _{x \rightarrow-2^{-}} f(x)=$
(g) $\lim _{x \rightarrow-2^{+}} f(x)=$
(h) $\lim _{x \rightarrow-2} f(x)=$
(i) $f(-2)=$

## Properties of Limits:

$$
\begin{aligned}
& \text { 1. } \lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x) \\
& \text { 2. } \lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)
\end{aligned}
$$

Given that $\lim _{x \rightarrow a} f(x)=-3, \lim _{x \rightarrow a} g(x)=0, \lim _{x \rightarrow a} h(x)=8$,
find the limits that exist. If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow a}[f(x)+h(x)]=$
(b) $\lim _{x \rightarrow a}[f(x)]^{2}=$
(c) $\lim _{x \rightarrow a} \sqrt[3]{h(x)}=$
(d) $\lim _{x \rightarrow a} \frac{1}{f(x)}=$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{h(x)}=$
(f) $\lim _{x \rightarrow a} \frac{g(x)}{f(x)}=$
(g) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
(h) $\lim _{x \rightarrow a} \frac{2 f(x)}{h(x)-f(x)}=$

