2.2 Limits to Infinity

Use the table on your calculator to investigate the limit numerically:
$\lim \frac{1}{x}=$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=$
$x \rightarrow \infty x$
$x \rightarrow-\infty x$

Definition of a Horizontal Asymptote:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=b \\
& \text { If } \\
& \lim _{x \rightarrow-\infty} f(x)=b
\end{aligned} \text { then there is a HA at } \mathrm{y}=\mathrm{b}
$$

Estimate: (remember this includes both the left and right hand limits!)

$$
\lim _{x \rightarrow 0+} \frac{1}{x}=
$$

$$
\lim _{x \rightarrow 0-} \frac{1}{x}=
$$

$$
\lim \frac{1}{-}=
$$

$$
x \rightarrow 0 \quad x
$$

Definition of a Vertical Asymptote:
$\lim _{x \rightarrow{ }^{+}} f(x)= \pm \infty$
$x \rightarrow a^{+}$
then there is a VA at $x=a$
Or
$\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$
$x \rightarrow a^{-}$

Summary of finding asymptotes

Horizontal Asymptotes:

1. If degree of the numerator is < the degree of the denominator: $y=0$
2. If degree of the numerator is = to the degree of the denominator: $y=$
3. If degree of the numerator is $>$ the degree of the denominator: $y=q u o t i e n t$

Vertical Asymptotes:

Domain restrictions

Power Function End

Behavior Models:

$$
f(x)=\frac{x^{2}+1}{x+2}
$$

Graph $f(x)$ using the following windows:
[-15,15] [-20,10]

$[-1500,1500][-2000,1000]$
what is an end-behavior model for $f(x)$:

Find all asymptotes and describe them using limits. Find a power function that resembles $f(x)$.

1. $f(x)=\frac{x+4}{x^{2}-9}$
2. $f(x)=\frac{2 x^{2}+3 x-1}{x^{2}-4}$
3. $f(x)=\cos \left(\frac{1}{x}\right)$
4. $f(x)=\frac{2 x-1}{|x|-3}$
5. $f(x)=\frac{5 x+\sin x}{x}$
6. $f(x)=\frac{4 x^{3}+2 x-1}{x+3}$
