Warm Up
$$f(x) = \frac{x-6}{x^2+2}$$

a. Find f'(x)

3.4 Rates of Change

- b. Find the slope of the tangent line at x=2
- c. Find the equation of the tangent line at x=2
- d. Find the equation of the normal line at x=2

Use $f(x) = x^3 - 2x^2 - 4x + 2$ to find each o	f
the following	

a. f'(x)	b. f '(0)	c. f'(1)

d. f'(2) e. f'(3)

Particle Motion: Analyzing motion along a line is a common application of derivatives in physics. It is a great example of one of the many reasons for studying Calculus. We use calculus to describe (in detail) the motion of any object along a line

What questions might you ask about the motion of

an object along a line?

f. Write a description of the graph of f(x) using only the derivatives above

g. Given f(0)=2 draw arough sketch of f(x)

		4	4		
-					┢
-					_
-					
	_		_		
			7		

Definitions:

Position:

Displacement:

Average Velocity:

Instantaneous Velocity:

Speed:

Acceleration:

Turning Point:

A particle moves along a line so that it's position at any time t seconds is given by the function $s(t) = t^3 - 2t^2 - 4t + 2$ in feet.

a. Find the average velocity from $0 \le t \le 3$

b. What is the instantaneous velocity at t=3 seconds?

c. What is the acceleration at t=3 seconds?

d. What is the speed at t=1 second?

e. Find the displacement after 3 seconds

f. At what time t does the particle change direction?

The equation for free fall on Mars is $s(t) = 1.86t^2$ meters with t in seconds. How long would it take a rock falling from rest to reach a velocity of 20 m/s (about 45 mph)?

The equation for free fall on Jupiter is $s(t) = 11.44t^2$ meters with t in seconds. How long would it take a rock falling from rest to reach a velocity of 20 m/s (about 45 mph)?

Helpful Info:

Moving Forward:

Moving Backward:

Speeding Up:

Slowing down:

c) When is the particle's acceleration positive? Negative?

d) When is the particle speeding up? Slowing down?

e) When does the particle move at its greatest speed?