Warm Up $\quad f(x)=\frac{x-6}{x^{2}+2}$
a. Find $f^{\prime}(x)$

3.4 Rates of Change

 using only the derivatives aboveg. Given $f(0)=2$ draw a rough sketch of $f(x)$

c. Find the equation of the tangent line at $x=2$
d. Find the equation of the normal line at $x=2$

Particle Motion: Analyzing motion along a line is a common application of derivatives in physics. It is a great example of one of the many reasons for
b. Find the slope of the tangent line at $x=2$ studying Calculus. We use calculus to describe (in detail) the motion of any object along a line

What questions might you ask about the motion of
d. $\mathrm{f}^{\prime}(2)$
e. $\mathrm{f}^{\prime}(3)$
f. Write a description of the graph of $f(x)$ an object along a line?
Use $f(x)=x^{3}-2 x^{2}-4 x+2$ to find each of the following
a. $f^{\prime}(x)$
b. $\mathrm{f}^{\prime}(0)$
C. $f^{\prime}(1)$

Definitions:

Position:

Displacement:

Average Velocity:

Instantaneous Velocity:

Speed:

Acceleration:

Turning Point:

The equation for free fall on Mars is $s(t)=1.86 t^{2}$ meters with t in seconds. How long would it take a rock falling from rest to reach a velocity of $20 \mathrm{~m} / \mathrm{s}$ (about 45 mph)?

A particle moves along a line so that it's position at any time t seconds is given by the function $s(t)=t^{3}-2 t^{2}-4 t+2$ in feet.
a. Find the average velocity from $0 \leq t \leq 3$
b. What is the instantaneous velocity at $\mathrm{t}=3$ seconds?
c. What is the acceleration at $\mathrm{t}=3$ seconds?
d. What is the speed at $t=1$ second?
e. Find the displacement after 3 seconds
f. At what time t does the particle change direction?

The equation for free fall on Jupiter is $s(t)=11.44 t^{2}$ meters with t in seconds. How long would it take a rock falling from rest to reach a velocity of $20 \mathrm{~m} / \mathrm{s}$ (about 45 mph)?

Helpful Info:

Moving Forward:

Moving Backward:

Speeding Up:

Slowing down:

c) When is the particle's acceleration positive? Negative?

-

d) When is the particle speeding up? Slowing down?
e) When does the particle move at its greatest speed?

