3.5 Derivatives with Trig

Objectives:

- I know the Trig derivative rules
- I can find the derivative with a trig component
- I can find a tangent and normal line
- I can determine position, velocity, speed, and acceleration

Warm Up

Find the derivative
$\begin{array}{ll}\text { 1. } y=\frac{3}{x^{2}} & \text { 2. } f(x)=3 e^{5}\end{array}$
3. $g(x)=\frac{x^{6}}{3}$
4. $y=\frac{x^{3}}{x+1}$
5. Find the equation of the line tangent to $f(x)=x^{3}-3 x$ at $\mathrm{x}=4$. Verify graphically.
6. Find x coordinates of the turning points of $f(x)=x^{3}-3 x$

Find a rule for the derivative of $f(x)=\sin x$

Find a rule for the derivative of $f(x)=\tan x$

Find a rule for the derivative of $f(x)=\cos x$

Trig Rules (Rule Sheet)
61. $\frac{d}{d x}(\sin x)=\cos x$
62. $\frac{d}{d x}(\cos x)=-\sin x$
63. $\frac{d}{d x}(\tan x)=\sec ^{2} x$
64. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$
65. $\frac{d}{d x}(\sec x)=\sec x \tan x$
66. $\frac{d}{d x}(\csc x)=-\csc x \cot x$

1. Find the derivative of $y=x^{3} \cos x$
2. Differentiate $f(x)=\frac{\csc x}{x^{3}}$

Find the normal line of $y=3 x+x \csc x$ at $x=-\frac{3 \pi}{4}$

Find the tangent line of $y=\frac{\tan x}{x}$ at $x=\frac{\pi}{4}$

A body is moving in simple harmonic motion according to the equation $s=1-4 \cos t$
a) Find the velocity, speed, and acceleration at time t
b) Fid the position, velocity, speed and acceleration
at $t=\frac{\pi}{4}$
c) Describe the motion of the body

