RS #60 The Chain Rule

 $\frac{d}{dx}(f(u)) = f'(u) \bullet u'$

u= the inside function

If y = f(u) where us is the inside function, then

Objectives:

- I can use the chain rule to take the derivative of composed functions

3.6 The Chain Rule

 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

Take the derivative of the following		Take the derivative of the following	
1. $y = (x - 3)^2$	2. $y = \sin(x^2 + 3)$	5. $y = \tan^2 x$	6. $y = \frac{1}{(2x^2 + 1)^2}$

3.
$$y = \cos(\tan x)$$

4. $y = \frac{1}{x^2 - 5}$
7. $y = \left(\frac{\cos x}{\sin x + 1}\right)^2$
8. $y = 3\sin\left(\frac{2}{x}\right)$

Take the derivative of the following

Find the derivative of each function

13.
$$y = \sqrt{x + \cos x}$$
 $f(x) = \sin^2 x$

9.
$$y = (1 + \sin 2x)^2$$
 10. $y = \sqrt{\sin 3x}$

11.
$$y = \sin\left(\frac{3}{x}\right)$$
 12. $y = \frac{1}{\sin x}$

$$g(x) = \frac{3}{\left(x^2 + 1\right)^2}$$

Find the derivative

1. $y = (\csc x + \cot x)^{-1}$

Find the derivative

3.
$$y = 4\sqrt{\sec x + \tan x}$$

2. $f(x) = x^3(2x-5)^4$

$$4. g(x) = \frac{x}{\sqrt{1+x^2}}$$

Find the derivative:

5. $y = (1 + \cos 2x)^2$

Find the derivative:

7. $r = \sec(2\theta)\tan(2\theta)$

6. $y = \sqrt{\tan 5x}$

Find the second derivative

8. $f(x) = \cot x$

Book Section 3.6 #58 Working with Numerical Values

9.
$$f(x) = 9 \tan\left(\frac{x}{3}\right)$$