3.8 Derivatives of Inverse Functions

Objectives:

- I can find the derivative of an inverse function

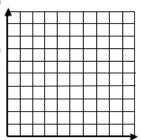
- I can find the derivative of an inverse trig function

Part I:

- a. Graph $f(x) = x^2$ for $x \ge 0$
- b. What is f(2)?

c. Draw the point on the graph that you just found. Label it A.

- d. What is f '(2)?
- e. Draw the tangent line at x=2 (point a)



- f. Find $f^{-1}(x)$
- g. Graph $f^{-1}(x)$
- h. Draw the point on $f^{-1}(x)$ that is the reflection of point A. Label it point B.
- i. Find the slope of the tangent line

of $f^{-1}(x)$ at point B.

j. Draw the line.

k. What is the relationship between the slopes of the tangent lines of this "reflected pair" A and B?

I. Do you think that relationship is true of all "reflected pairs" of points?

Summary:

$$f(a) = b \longrightarrow f^{-1}(b) = a$$
$$f'(a) = c \longrightarrow (f^{-1})'(b) = \frac{1}{c}$$

Given $f(x) = x^4 - 3x^2 + 4x + 2$ find the following: a) f(1), f'(1) b) $f^{-1}(4), (f^{-1})'(4)$ Given $f(x) = \cos x + x$ find the following:

a) f(0), f'(0) b) $f^{-1}(1), (f^{-1})'(1)$

Part II: Inverse trig functions

Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1} x$

Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1} x$

Rule Sheet: 67-72
Helpful identities

67.
$$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$$
68. $\frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}}$
sec^{-1}x = cos^{-1} \left(\frac{1}{x}\right)

69. $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$
70. $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$
csc^{-1}x = sin^{-1} \left(\frac{1}{x}\right)

71. $\frac{d}{dx}(\sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}}$
cot^{-1}x = tan^{-1} \left(\frac{1}{x}\right)

72. $\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}$
cot^{-1}x = tan^{-1} \left(\frac{1}{x}\right)

 $f(x) = \cos^{-1}(3x)$ $y = \cos^{-1}\left(\frac{3}{x}\right)$

Derive:
$$f(x) = \csc^{-1}(3x+2)$$
 $y = \tan^{-1}\sqrt{x^2+2}$

$$g(x) = \sin^{-1} x^2$$
 $g(x) = \cos^{-1} \left(\frac{4}{x^2}\right)$ $y = \sec^{-1}(3x^2)$ $f(x) = \sin^{-1} \left(\frac{1}{x}\right)$