3.8 Derivatives of Inverse Functions

Objectives:

- I can find the derivative of an inverse function
- I can find the derivative of an inverse trig function

Part I:

a. Graph $f(x)=x^{2}$ for $x \geq 0$
b. What is $f(2)$?
c. Draw the point on the graph that you just found. Label it A.
d. What is $f^{\prime}(2)$?
e. Draw the tangent line at $\mathrm{x}=2$ (point a)
f. Find $f^{-1}(x)$

g. Graph $f^{-1}(x)$
h. Draw the point on $f^{-1}(x)$ that is the reflection of point A. Label it point B.
i. Find the slope of the tangent line of $f^{-1}(x)$ at point B.
j. Draw the line.
k. What is the relationship between the slopes of the tangent lines of this "reflected pair" A and B?
I. Do you think that relationship is true of all "reflected pairs" of points?

Given $f(x)=x^{4}-3 x^{2}+4 x+2$ find the following:
a) $f(1), f^{\prime}(1)$
b) $f^{-1}(4),\left(f^{-1}\right)^{\prime}(4)$

Summary:

$$
\begin{aligned}
& f(a)=b \longrightarrow f^{-1}(b)=a \\
& f^{\prime}(a)=c \longrightarrow\left(f^{-1}\right)^{\prime}(b)=\frac{1}{c}
\end{aligned}
$$

Given $f(x)=\cos x+x$ find the following:
a) $f(0), f^{\prime}(0)$
b) $f^{-1}(1),\left(f^{-1}\right)^{\prime}(1)$

Part II: Inverse trig functions
Find $\frac{d y}{d x}$ if $y=\sin ^{-1} x$

Find $\frac{d y}{d x}$ if $y=\tan ^{-1} x$

Rule Sheet: 67-72
67. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \quad 68 . \frac{d}{d x}\left(\cos ^{-1} x\right)=\frac{-1}{\sqrt{1-x^{2}}}$
69. $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
70. $\frac{d}{d x}\left(\cot ^{-1} x\right)=\frac{-1}{1+x^{2}}$
71. $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$
72. $\frac{d}{d x}\left(\csc ^{-1} x\right)=\frac{-1}{|x| \sqrt{x^{2}-1}}$

Helpful identities

$$
\begin{aligned}
& \sec ^{-1} x=\cos ^{-1}\left(\frac{1}{x}\right) \\
& \csc ^{-1} x=\sin ^{-1}\left(\frac{1}{x}\right) \\
& \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Derive:

$$
f(x)=\cos ^{-1}(3 x) \quad y=\cos ^{-1}\left(\frac{3}{x}\right)
$$

$$
g(x)=\sin ^{-1} x^{2} \quad g(x)=\cos ^{-1}\left(\frac{4}{x^{2}}\right) \quad y=\sec ^{-1}\left(3 x^{2}\right)
$$

Derive:

$$
f(x)=\csc ^{-1}(3 x+2)
$$

$$
y=\tan ^{-1} \sqrt{x^{2}+2}
$$

