What is the derivative of $y=e^{x}$
Analytically:

3.9 Logarithmic/Exponential Derivatives

Objectives:

- I can find the derivative of an
exponential function
- I can find the derivative of a logarithmic function

Graphically:

Numerically:
58. $\frac{d}{d x}\left(e^{x}\right)=e^{x} \quad$ 59. $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$

$$
d x
$$

$$
d x
$$

Rule Sheet

56. $\frac{d}{d x}(\ln x)=\frac{1}{x}, x>0$
57. $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, x>0$

Find the derivative. State any domain restrictions.
$f(x)=2 e^{2 x}$
$y=e^{-\frac{x}{2}}$

$$
g(x)=3^{4 x}
$$

$$
y=x e^{2 x}
$$

Find the derivative. State any domain restrictions.
$y=4^{x^{2}} \quad g(x)=\ln \left(\frac{1}{x}\right)$
$y=\ln \left(x^{2}\right)$
$y=\log _{6}\left(x^{3}+2 x-1\right)$

Find the derivative. State any domain restrictions.

$$
y=\frac{e^{x}}{\ln x}
$$

$$
y=x \ln x
$$

$$
y=e^{2 \ln 6}
$$

$$
f(x)=\ln 2^{x}
$$

Find the derivative. State any domain restrictions.
$y=\log _{6} \sqrt[3]{x}$
$y=\ln (\cos x)$
$y=\ln (\ln x)$

$$
y=e^{\tan 2 x}
$$

Find the equation of the line tangent to $y=2 e^{x}$ at $x=1$

