4.3 Derivative Tests

Objectives:

- I can find extremes of a function using the first derivative test

- I can determine concavity of a function using the second derivative
- I can use the second derivative test to find extreme values

The First Derivative Test (for local extrema)
*Find all extreme values and increasing/decreasing intervals
$f(x)=x^{4}-2 x^{3}+2$

Concavity and the Second Derivative
 Concave up:
 Concave down:

Inflection point:

Concavity Test

Analyze the function using the first derivative test and the concavity test

1. $y=\frac{1}{3} x^{3}+x^{2}-3 x+2$

Analyze the function using the first derivative test and the concavity test

$$
y=-2 x^{3}+6 x^{2}-3
$$

2. Use the given graph of $f(x)$ to estimate the following.

a) Increasing
b) Decreasing
d) Inflection Points
e) Concave up
f) Concave down

Use the given graph of $\mathrm{f}^{\prime}(\mathrm{x})$ to estimate the

 following on $f(x)$.
d) Inflection Points
a) Increasing
b) Decreasing
c) Local Extrema
e) Concave up
f) Concave down

How do we find a critical point?

How do we know if a critical point is an extreme value?

How do we find an inflection point?

What is an inflection point?

Second Derivative Test For Extrema
 If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and f "(c) <0, then f has a local max at $\mathrm{x}=\mathrm{c}$
 If $\mathrm{f}^{\prime}(\mathrm{c})=0$ and f " $(\mathrm{c})>0$, then f has a local min at $\mathrm{x}=\mathrm{c}$

Use the second derivative test to final all max/min values of each function

1. $g(x)=-x^{3}+9 x$
2. $f(x)=x^{5}-80 x+100$
3. $y=x e^{x}$
