4.4 Optimization

Objectives:
 - I can write a model to represent a situation

- I can solve a model to maximize or minimize a value

Consider an open box made by cutting congruent squares out of the corners of an $81 / 2 \times 11$ in sheet of paper.

What size square could be cut out to maximize the volume?
Process for optimizing
1- Understand the problem- Draw a diagram and assignvariables.
2- Write a model (function) to represent the problem
-Start with the equation of what you are trying tomaximize

- Use substitution to get the equation as a function ofonly one variable.3- Identify critical points and closed endpoints ascandidates.
4- Test critical points to determine max/min
- Plug into function or
- First derivative test or
- Second derivative test
5- Interpret/state solution

1. You are designing an open box with a square baseand a required volume of 108 cubic inches. Whatdimensions would minimize the materials needed?
2. A rectangle is inscribed between $y=-x^{2}+9$ and the x-axis. Find the maximum area of the rectangle.
3. A rectangle is inscribed between $y=\sin x$ and the $x-$ axis over $[0, \pi]$. Find the maximum area of the rectangle.
4. Design a 2-liter can with minimum surface area.
5. What are the dimensions of the lightest open top right cylindrical can that will hold 2197 cubic cm?
6. Suppose $r(x)=\frac{x^{2}}{x^{2}+1}$ represents revenue and
$c(x)=\frac{(x-1)^{2}}{3}-\frac{1}{3}$ represents cost, with x measured
in thousands of units. What is the production level that maximizes profit?
7. Bobby is 3 miles off shore in a boat and wants to reach a campsite that is 5 miles down a straight shoreline from the point nearest to his boat. He can row 3 mph and jog 4 mph . How far from camp should he land his boat to minimize the time to reach the camp?
8. How close does the semicircle $y=\sqrt{16-x^{2}}$ come to the point $(1, \sqrt{3})$

9. Stiffness of a Beam The stiffness S of a rectangular beam is proportional to its width times the cube of its depth.
(a) Find the dimensions of the stiffest beam that can be cut from a 12 -in. diameter cylindrical log.
(b) Writing to Learn Graph S as a function of the beam's width w, assuming the proportionality constant to be $k=1$. Reconcile what you see with your answer in part (a).
