Let's try to approximate $\sqrt{\gamma}\,$ without a calculator

4.5/4.2 Linearization, Differentials, and Antiderivatives

Objectives:

- I can find a general antiderivative
- I can evaluate using differentials
- I can find the linearization of a function

Use an appropriate linearization to approximate $\sqrt{110}$

The linearization of f at a is given by:

L(x) = f'(a)(x-a) + f(a)

Find the linearization L(x) of f(x) at x=a

$$f(x) = x + \frac{1}{x}, \ a = 1$$

Differentials

 $\frac{dy}{dx}$ is a notation that represents the derivative.

Separately, dy and dx are called differentials.

Find dy. Then evaluate dy for the given values.

1.
$$y = \frac{x}{x^2 - 1}$$
, $x = 3$, $dx = .01$

2.
$$y = x\sqrt{x-1}$$
, $x = 2$, $dx = .005$

Find each general antiderivative

If
$$f'(x) = 2x + 4$$
, can we find $f(x)$??

3.
$$f'(x) = x^2 - 2x$$
 4. $f'(x) = \sec^2 x$

5.
$$f'(x) = \frac{1}{x+6}, x > -6$$

Consider f'(x) = 2x + 4 again. When finding f(x) what information would we need to find C?

Find the particular antiderivative that passes through the point P.

6.
$$f'(x) = 3x P(1,5)$$

7.
$$f'(x) = \frac{1}{3x^{\frac{2}{3}}}$$
 P(8,3)

8. $f'(x) = x^2 + 2 + \sin x$ P(0,5)