5.3.1 Rules for Integrals

1. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x \quad$ 2. $\int_{a}^{a} f(x) d x=0$

RS\#74 3. $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
RS\#73 4. $\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
5. $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$

$$
\text { Given } \begin{aligned}
\int_{3}^{7} f(x) d x=6 & \int_{7}^{10} f(x) d x=-1 \\
\int_{7}^{10} g(x) d x=4 & \int_{3}^{5} f(x) d x=2
\end{aligned}
$$

Find each of the following integrals

1. $\int_{7}^{3} f(x) d x$
2. $\int_{2}^{2} f(x) d x$

$$
\text { 3. } \int_{7}^{10}(2 f(x)+3 g(x)) d x \quad \text { 4. } \int_{10}^{3} f(x) d x
$$

5. $\int_{5}^{7} f(x) d x$

Consider the following velocity graph of the motion of a particle.

Using an integral, express the distance traveled by the particle:

Find another way to express the distance traveled by the particle (using $s(t)$).

Put the two results above together

What is the significance of the above equation?

Evaluate the following integrals analytically.
6. $\int_{0}^{1} e^{x} d x$
7. $\int_{0}^{\pi} \sin x d x$
8. $\int_{1}^{e} \frac{1}{x} d x$
9. $\int_{0}^{4} x^{3} d x$

Find the area between $y=x^{2}$ and the x-axis over [0,2]

