5.3.2 Average Value of a Function

What do we mean by the average value of a function?

Think about the average value of $f(x)=x^{2}$ over $[0,3]$

What about the average value of a velocity graph? (The average velocity)

Write a formula:
The formula applies to the average value of all functions

Now find the average value of $f(x)=x^{2}$ over $[0,3]$

Will $f(x)=x^{2}$ ever equal its average value over $[0,3] ? ?$ Where?

Will there always be an $x=c$ in $[a, b]$ such that $f(c)$ is the average value of the function over [a,b]? Under what conditions?

What theorem does this sound like?

Theorem:

Find the average value of each function over the given interval. At what x-value does the function take on its average value?

1. $f(x)=-2 x^{3},[1,3]$
2. $f(x)=(x+2)^{2},[-1,1]$

$$
\text { 3. } g(x)=x^{3}+1,[1,4]
$$

4. $h(x)=e^{2 x},[0, \ln 2] \quad$ (Check using calc)

Comparisons between Mean Value Theorems

MVT for derivatives	MVT for integrals
Average rate of change	Average value of function
Derivative $\mathrm{f}^{\prime}(\mathrm{x})$	$\mathrm{f}(\mathrm{x})$
Set them $=$	Set them $=$
Solve	Solve

