5.3.2 Average Value of a Function

What do we mean by the average value of a function?

Think about the average value of $f(x) = x^2$ over [0,3]

What about the average value of a velocity graph? (The average velocity)

Write a formula:

The formula applies to the average value of all functions

Now find the average value of $f(x) = x^2$ over [0,3]

Will $f(x) = x^2$ ever equal its average value over [0,3]?? Where?

Will there always be an x=c in [a,b] such that f(c) is the average value of the function over [a,b]? Under what conditions?

What theorem does this sound like?

Theorem:

Find the average value of each function over the given interval. At what x-value does the function take on its average value?

1. $f(x) = -2x^3$, [1,3]

2. $f(x) = (x+2)^2$, [-1,1]

3. $g(x) = x^3 + 1$, [1,4]

4. $h(x) = e^{2x}$, [0,ln2] (Check using calc)

Comparisons between Mean Value Theorems

MVT for derivatives	MVT for integrals
Average rate of	Average value of
change	function
Derivative f '(x)	f(x)
Set them =	Set them =
Solve	Solve