Find the general solution to the initial value problem.

1. $\frac{d y}{d x}=3 x^{2}+\cos x$
2. $\frac{d y}{d x}=\frac{1}{x^{3}}+\frac{1}{x}$
6.1 Differential Equations, Initial Value Problems, and Slope Fields

$$
\text { 3. } \frac{d y}{d x}=-\frac{1}{x^{2}+1}+e^{-2 x} \quad \text { 4. } \frac{d u}{d x}=e^{\sin x} \cdot \cos x
$$

Solve the initial value problem. Find the particular solution.
5. $\frac{d y}{d x}=4 \cos x ; y=3$ when $x=\frac{\pi}{2}$
7. $\frac{d y}{d x}=\sin x ; f(0)=4$
8. $\frac{d y}{d x}=\frac{1}{x}+8 ; y=0$ when $x=e$

Solve the initial value problem. You will have an integral in your solution.
9. $\frac{d y}{d x}=\tan ^{2} x ; y=4$ when $x=3$

What does this differential function tell us?
$\frac{d y}{d x}=2 x$

How can we represent what we learn from the equation graphically?

2. $\frac{d y}{d x}=\frac{x}{y}$

Draw a slope field and find the particular solution the differential equation.
5. $\frac{d y}{d x}=\frac{x^{2}}{y} ; f(3)=1$

6. $\frac{d y}{d x}=\frac{-x y^{2}}{2} ; f(-1)=2$

7. Write an equation that the slope field could represent
d)

e)

pg. 328 \#35 and \#36

b)

