7.3.1 Solids of Revolution

Consider the region bound by $f(x)=x^{2}$ and the x axis over $[0,4]$

Rotate the region about the x-axis. We call this a solid of revolution. How could we find the volume of the solid?

Find the volume of the solid generated by rotating the enclosed region about the x -axis.

1. $y=\sqrt{x}, x=4, y=0$

2. $y=e^{x}, x=0, x=\ln 4, y=0$

3. $y=\sqrt{4-x^{2}}, y=0$

4. $y=x^{2}, y=x^{3}$

5. $y=\sin x, y=0[0, \pi]$

6. $y=\sin x, y=\sqrt{2}\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$

Find the volume of the solid generated by rotating the enclosed region about the y-axis.
8. $y=x^{2}, x=0, y=4$

10. $y=x^{2}, x=4, y=0$

9. $y=2 x, x=0, y=6$

Find the volume of the solid generated by rotating the enclosed region about the given axis.
11. $y=x^{3}, y=\sqrt{x}$ about $y=1$

12. $y=x^{3}, y=\sqrt{x}$ about $y=-3$

2. $y=2 x, x=0, y=6$, about $x=0$

7.3.2 More Volumes

Find the volume of the solid formed by rotation the bounded region about the given axis.

1. $y=x^{2}, x=0, y=4$, about $x=0$

2. $y=x^{2}, x=4, y=0$, about $x=0$

3. $y=\sqrt{x}, y=0, x=4$, about $x=-2$

4. $y=x^{2}, y=0, x=2$, about $y=-2$

5. $y=x^{2}, y=0, x=2$, about $y=4$

6. $y=x^{2}, y=0, x=2$, about $x=-1$

7. $y=x^{3}, y=\sqrt{x}$, about $y=2$

8. $y=x^{3}, y=\sqrt{x}$, about $x=1$

